¹ Institute of Forestry and Engineering, Estonian University of Life Sciences, 51014, Tartu, Estonia 2 Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51014, Tartu, Estonia

 $\zeta_{\mathcal{N}}(\alpha \mathsf{h}^{\mathbf{a}})$

Impact of synthesis conditions on optical and electrochemical properties of SnO² nanomaterials

Reynald Ponte¹, Erwan Rauwel², Protima Rauwel^{*1}

 SnO_2 nanoparticles were synthesized using nonaqueous sol-gel method. SnCl_4 precursor was added to benzyl alcohol solvent in a sealed autoclave. The autoclave was heated up at 295 °C for 24 hours. Resulting powder is washing with dichloromethane. **SnO² :CNT** sample was synthesized by adding CNT (functionalized with benzyl alcohol) prior to the synthesis.

Optical properties UV-Visible spectroscopy Photoluminescence ∙SnO₂:CN⁻ in-plane V_{Γ} **P**irect $(a.u.)$ bridging V_{\bigcap}

Introduction

- Study of structural, optical and electrochemical properties of $SnO₂$ nanoparticles synthesized by sol-gel method.
- SnO₂ nanoparticles were prepared using tin chloride hydrated (SnO₂).
- SnO₂ nanoparticles were coupled with carbon nanotube (SnO₂:CNT).

Nanomaterials are mostly spherical and cubic-like shape. Nanoparticles have an average size between 10 and 20 nm for $SnO₂$ and $SnO₂:CNT$.

> Scherrer-Bragg equation. d_{hkl} is the crystallite size, K the Scherrer constant, β the full width at half maximum and θ the angle.

 $SnO₂$ nanoparticles were obtained with a single tetragonal rutile phase. Scherrer-Bragg formula give crystallite size of 12.8 and 14.5 nm for $SnO₂$ and $SnO₂:CNT$, respectively.

- Similar nearly-rectangular shape highlighting pseudo-capacitor behavior.
- Higher capacitance $(\sim 500 \text{ mA} \text{h} \cdot \text{g}^{-1})$ is achieved with CNT due to passivation or surface defects (against ~400 mAh.g⁻¹). Oxygen vacancies may act as screening center hindering Li⁺ diffusion pathway.

Conclusion

- Rutile $SnO₂$ nanoparticles with sizes of 10 20 nm have been synthesized.
- Nanosized SnO_2 are synthesized and display oxygen vacancies.
- Pristine SnO₂ nanomaterials demonstrate high energy capacity (~ 400 mAh.g⁻¹).
- Carbon nanotubes passivate surface defects that hinder Li⁺ ions diffusion and decrease ionic conductivity of $Li⁺$ which result into higher energy capacity (~ 500 mAh.g⁻¹).

- New Raman active peaks due to nanosized $SnO₂$ materials and defects (E_u inactive mode at \sim 300 cm⁻¹).
- FTIR shows the presence of organics (alcohol and aliphatic hydrocarbon compounds from degradation of benzyl alcohol) coated at the surface of $SnO₂$ nanomaterials.
- Low intensity peak of CNT around 3400 and 1600 cm⁻¹.

Synthesis

- Optical direct and indirect bandgap of 4.2 and 3.8 eV respectively for all $SnO₂$ samples.
- CNT passivate surface defects (decrease of oxygen vacancy intensities).

 $C=$ 1 $m\Delta V$ IdV **Capacitance Formula**

X-ray diffraction (XRD)

Transmission electron microscopy (TEM)

Structural properties

Capacitance formula. m is the mass of active materials, ΔV the potential window, I the current and V the potential.

This research has been supported by the European Regional Development Fund project grant number TK134 "EQUiTANT", Eesti Maaülikool (EMÜ Bridge Funding (P200030TIBT)) and NFFA pilot project ID-312.

tuleviku heak

Acknowledgement

X-ray photoelectron spectroscopy

- Additional C-C (sp²) peak at 283.98 eV belonging to CNT.
- Presence of CNT passivate V_0 (decrease of V_0 peak at 281.7 eV).

