

Impact of synthesis conditions on optical and electrochemical properties of SnO₂ nanomaterials

Reynald Ponte¹, Erwan Rauwel², Protima Rauwel^{*1}

¹ Institute of Forestry and Engineering, Estonian University of Life Sciences, 51014, Tartu, Estonia ² Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51014, Tartu, Estonia

Introduction

- Study of structural, optical and electrochemical properties of SnO_2 nanoparticles synthesized by sol-gel method.
- SnO₂ nanoparticles were prepared using tin chloride hydrated (SnO₂).
- SnO₂ nanoparticles were coupled with carbon nanotube (SnO₂:CNT).

Synthesis

 SnO_2 nanoparticles were synthesized using nonaqueous sol-gel method. $SnCl_4$ precursor was added to benzyl alcohol solvent in a sealed autoclave. The autoclave was heated up at 295 °C for 24 hours. Resulting powder is washing with dichloromethane. SnO₂:CNT sample was synthesized by adding CNT (functionalized with benzyl alcohol) prior to the synthesis.

Structural properties

Transmission electron microscopy (TEM)

Nanomaterials are mostly spherical and cubic-like shape. Nanoparticles have an average size between 10 and 20 nm for SnO₂ and SnO₂:CNT.

X-ray diffraction (XRD)

- Optical direct and indirect bandgap of 4.2 and 3.8 eV respectively for all SnO₂ samples.
- CNT passivate surface defects (decrease of oxygen vacancy intensities).

X-ray photoelectron spectroscopy

Kλ $\beta \cos(\Theta)$

Scherrer-Bragg equation. d_{hkl} is the crystallite size, K the Scherrer constant, β the full width at half maximum and θ

SnO₂ nanoparticles were obtained with a single tetragonal rutile phase. Scherrer-Bragg formula give crystallite size of 12.8 and 14.5 nm for SnO₂ and SnO₂:CNT, respectively.

- Additional C-C (sp²) peak at 283.98 eV belonging to CNT.
- Presence of CNT passivate V_{Ω} (decrease of V_{Ω} peak at 281.7 eV).

- New Raman active peaks due to nanosized SnO_2 materials and defects (E₁ inactive mode at ~ 300 cm^{-1}).
- FTIR shows the presence of organics (alcohol and aliphatic hydrocarbon compounds from degradation of benzyl alcohol) coated at the surface of SnO_2 nanomaterials.
- Low intensity peak of CNT around 3400 and 1600 cm⁻¹.

Acknowledgement

This research has been supported by the European Regional Development Fund project grant number TK134 "EQUITANT", Eesti Maaülikool (EMÜ Bridge Funding (P200030TIBT)) and NFFA pilot project ID-312.

uleviku heak

IdV **Capacitance Formula**

Capacitance formula. m is the mass of active materials, ΔV the potential window, I the current and V the potential.

- Similar nearly-rectangular shape highlighting pseudo-capacitor behavior.
- Higher capacitance (~500 mAh.g⁻¹) is achieved with CNT due to passivation or surface defects (against ~400 mAh.g⁻¹). Oxygen vacancies may act as screening center hindering Li⁺ diffusion pathway.

Conclusion

- Rutile SnO₂ nanoparticles with sizes of 10 20 nm have been synthesized.
- Nanosized SnO_2 are synthesized and display oxygen vacancies.
- Pristine SnO₂ nanomaterials demonstrate high energy capacity (~ 400 mAh.g⁻¹).
- Carbon nanotubes passivate surface defects that hinder Li⁺ ions diffusion and decrease ionic conductivity of Li⁺ which result into higher energy capacity (~ 500 mAh.g⁻¹).